Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
BMC Plant Biol ; 24(1): 378, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724893

Pakistan's economy greatly benefits from citrus production since these fruits are sold and consumed all over the world. Although citrus fruits are easy to cultivate, they are susceptible to diseases caused by bacteria, viruses, and fungi. These challenges, as well as difficulties in obtaining the proper nutrients, might negatively impact fruit yields and quality. Citrus canker is another complicated problem caused by the germ Xanthomonas axonopodis. This germ affects many types of citrus fruits all over the world. This study looked closely at how citrus canker affects the leaves and the quality of the fruit in places like Sargodha, Bhalwal, Kotmomin, and Silanwali, which are big areas for growing citrus in the Sargodha district. What we found was that plants without the disease had more chlorophyll in their leaves compared to the sick plants. Also, the healthy plants had better amounts of important minerals like calcium, magnesium, potassium, and phosphorus in their fruits. But the fruits with the disease had too much sodium, and the iron levels were a bit different. The fruits with the disease also didn't have as much of something that protects them called antioxidants, which made them more likely to get sick. This study helps us understand how citrus canker affects plants and fruit, so we can think of ways to deal with it.


Citrus , Fruit , Plant Diseases , Plant Leaves , Xanthomonas axonopodis , Citrus/microbiology , Xanthomonas axonopodis/physiology , Plant Leaves/microbiology , Plant Leaves/metabolism , Plant Diseases/microbiology , Fruit/microbiology , Minerals/metabolism , Minerals/analysis , Chlorophyll/metabolism , Pakistan
2.
Heliyon ; 10(9): e30473, 2024 May 15.
Article En | MEDLINE | ID: mdl-38711638

The designing of acceptors materials for the organic solar cells is a hot topic. The normal experimental methods are tedious and expensive for large screening. Machine learning guided exploration is more suitable solution. Bagging regression, random forest regression, gradient boosting regression, and linear regression are trained to predict exciton binding energy. Breaking Retrosynthetically Interesting Chemical Substructures (BRICS) methodology has utilized for designing of new non-fullerene acceptors (NFAs). The predicted values were used to select the designed NFAs. On the selected NFAs, clustering and chemical similarity analyses are also performed. Chemical fingerprints are used for this purpose, and the synthetic accessibility score of the new NFAs is also investigated.30 NFAs have selected with low exciton binding energy values. This approach will allow for the rapid screening of NFAs for organic solar cells. Our proposed framework stands out as a valuable tool for strategically selecting the most effective NFAs for organic solar cells and offers a streamlined approach for material discovery.

3.
Heliyon ; 10(7): e29060, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38623187

The Spodoptera frugiperda is a notorious pest with a broad host range. It severely damages crops, mainly in areas of the globewhere maize and sorghum are grown. The pest is difficult to control due to its adaptive nature and resistance to several insecticides available in the market. So, an identification of the alternative strategy is the prime important in the present context. Insecticidal activities of cyanobacterial extracts were evaluated in the laboratory as a biocomponent against S. frugiperda. The crude extracts of Nostoc muscorum and Spirulina sp. were prepared by using ethanol, methanol and petroleum ether solvents. Soxhlet apparatus was used for extraction. S. frugiperda larvae in their second instar were given access to fragments of maize leaf that had been treated with various cyanobacterial extracts. The findings displayed that the petroleum ether extract of N. muscorum had the lowest LC50 value of 155.22 ppm, followed by petroleum ether extracts of Spirulina, ethanol extract of N. Muscorum, methanol extract of N. muscorum, ethanol and methanol extract of Spirulina with an LC50 values of 456.02, 710, 780, 1050 and 1070 ppm respectively. Later, the effect of LC50 values on many biological parameters like the larval duration and pupal stages, the percentage of pupation, the weight of the pupal stage, the malformation of the pupal and adult stages, adult emergence percentage, fertility and the longevity of the male and female adult stages of S. frugiperda was examined. The gas chromatography-mass spectrometry (GC-MS) was used to analyse the crude extract to identify the bioactive components that were responsible for the insecticidal properties. The major compounds detected were diethyl phthalate (19.87 %), tetradecane (5.03%), hexadecanoic acid, ethyl ester (4.10 %), dodecane (4.03%), octadecane (3.72%), octadecanoic acid, methyl ester (3.40 %), ethyl oleate (3.11 %), methyl ester. octadecenoic acid (3.04 %), heptadecane (3.04 %) and phytol (3.02 %). The presence of several bioactive chemicals in the cyanobacterial extracts may be the reason for their insecticidal actions, thus it can be used as an alternative and new source to combat fall armyworm and other crop pests.

4.
RSC Adv ; 14(7): 4844-4852, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38323019

The structural, electronic and optical properties of silicene and its derivatives are investigated in the present work by employing density functional theory (DFT). The Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) is used as the exchange-correlation potential. Our results provide helpful insight for tailoring the band gap of silicene via functionalization of chlorine and fluorine. First, relaxation of all the materials is performed to obtain the appropriate structural parameters. Cl-Si showed the highest lattice parameter 4.31 Å value, while it also possesses the highest buckling of 0.73 Å among all the derivatives of silicene. We also study the electronic charge density, charge difference density and electrostatic potential, to check the bonding characteristics and charge transfer between Si-halides. The electronic properties, band structures and density of states (DOS) of all the materials are calculated using the PBE-GGA as well as the modified Becke-Johnson (mBJ) on PBE-GGA. Pristine silicene is found to have a negligibly small band gap but with the adsorption of chlorine and fluorine atoms, its band gap can be opened. The band gap of Cl-Si and F-Si is calculated to be 1.7 eV and 0.6 eV, respectively, while Cl-F-Si has a band gap of 1.1 eV. Moreover, the optical properties of silicene and its derivatives are explored, which includes dielectric constants ε1 and ε2, refractive indices n, extinction coefficients k, optical conductivity σ and absorption coefficients I. The calculated binding energies and phonon band structures confirm the stability of Cl-Si, Cl-F-Si, and F-Si. We also calculated the photocatalytic properties which show silicine has a good response to reduction, and the other materials to oxidation. A comparison of our current work to recent work in which graphene was functionalized with halides, is also presented and we observe that silicene is a much better alternative for graphene in terms of semiconductors and photovoltaics applications.

5.
ACS Omega ; 9(2): 2123-2133, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38250403

BACKGROUND: Wheat, an important cereal crop, is commonly cultivated in arid and semiarid areas, and therefore, it often experiences water deficit conditions. The consequences of induced stress on wheat can be mitigated through vermicompost amendments. To address drought stress on wheat seedlings, a pot experiment was conducted in the wire-house in which two contrasting wheat cultivars, Faisalabad-08 (drought-tolerant) and Galaxy-13 (drought-sensitive), were exposed to three water level conditions: well-watered [D0, 70% of field capacity (FC)], moderate drought (D1, 45% FC), and severe drought (D2, 30% FC). Four rates of vermicompost, derived from cow dung enriched with cellulolytic microbes, were applied (VT0, control; VT1, 4 t ha-1; VT2, 6 t ha-1; and VT3, 8 t ha-1) to the experiment. Data on various physiological, biochemical, and enzymatic antioxidants were recorded. RESULTS: Our results demonstrated that the drought treatments significantly reduced nutrient accumulation, chlorophyll and SPAD values, and carotenoid content in both cultivars where the maximum reduction was recorded for severe drought stress. Nonetheless, the application of vermicompost significantly improved these traits, and statistically maximum chlorophyll contents, SPAD value, and total carotenoid contents were observed for VT1 in both cultivars under drought treatments. While the lowest chlorophyll and carotenoid contents were recorded for untreated replicated pots. Among the cultivars, Faisalabad-08 exhibited greater resistance to drought, as evidenced by higher values of the aforementioned traits compared to Galaxy-13. Soil-applied vermicompost also showed a positive influence on antioxidant enzyme activities in both wheat cultivars grown under well-watered as well as water-scarce conditions. CONCLUSIONS: The findings of this study revealed that drought conditions substantially decreased the enzymatic antioxidants and physiological and biochemical attributes of the wheat crop. However, soil-applied vermicompost, particularly at an optimum rate, had a positive impact on the wheat seedlings under drought conditions. Moving forward, exploring the potential of utilizing cellulolytic microbe-enriched cow dung vermicompost stands as a promising avenue to mitigate the detrimental effects of water stress on wheat. Further research in this direction could offer substantial insights into enhancing wheat resilience and productivity under water stress conditions.

6.
BMC Plant Biol ; 23(1): 508, 2023 Oct 23.
Article En | MEDLINE | ID: mdl-37872477

BACKGROUND: Drought is one of the limiting factors for quality and quantity of cotton lint in tropical and sub-tropical regions. Therefore, development of drought tolerant cotton genotypes have become indispensable. The identification of drought tolerant genotypes is pre-requisite to develop high yielding cultivars suitable for drought affected areas. METHODS: Forty upland cotton accessions were selected on the basis of their adaptability and yield. The collected germplasm accessions were evaluated at seedling stage on the basis of morphological, physiological and biochemical parameters. The experiment was conducted under controlled conditions in greenhouse where these genotypes were sown under different levels of drought stress by following factorial under completely randomized design. The data were collected at seedling stages for root and shoot lengths, relative leaf water content, excised leaf water losses, peroxidase content and hydrogen peroxide concentrations in leaf tissues. RESULTS: The biometrical analysis revealed that germplasm is significantly varied for recorded parameters, likewise interaction of genotypes and water stress was also significantly varied. The cotton germplasm was categorized in eight clusters based on response to water stress. The genotype Cyto-124 exhibited lowest H2O2 content under drought conditions, minimum excised leaf water loss under stress environment was exhibited by genotypes Ali Akber-802 and CEMB-33. Overall, on the basis of morphological and biochemical traits, SL-516 and Cyto-305 were found to be drought tolerant. Genotypes 1852 - 511, Stoneville 15-17 and Delta Pine-55 showed low values for root length, peroxidase activity and higher value for H2O2 contents. On the basis of these finding, these genotypes were declared as drought susceptible. CONCLUSION: The categorization of cotton germplasm indicating the differential response of various parameters under the control and drought stress conditions. The recorded parameters particularly relative leaf water contents and biochemical assays could be utilized to screen large number of germplasm of cotton for water deficit conditions. Besides, the drought tolerant genotypes identified in this research can be utilized in cotton breeding programs for the development of improved cultivars.


Dehydration , Droughts , Hydrogen Peroxide , Plant Breeding , Genotype , Seedlings/genetics , Gossypium/genetics , Peroxidases/genetics
7.
Heliyon ; 9(9): e19486, 2023 Sep.
Article En | MEDLINE | ID: mdl-37662790

Citrobacter freundii is characterized by AmpC ß-lactamases that develop resistance to ß-lactam antibiotics. The production of extended-spectrum ß-lactamase (ESBL) is substantially high in Escherichia coli, C. freundii, Enterobacter cloacae, and Serratia marcescens, but infrequently explored in C. freundii. The present investigation characterized the ESBL C. freundii and delineated the genes involved in decrease in antibiotics resistance. We used the VITEK-2 system and Analytical Profile Index (API) kit to characterize and identify the Citrobacter isolates. The mRNA level of AmpC and AmpR was determined by RT-qPCR, and gel-shift assay was performed to evaluate protein-DNA binding. Here, a total of 26 Citrobacter strains were isolated from COVID-19 patients that showed varying degrees of antibiotic resistance. We examined and characterized the multidrug resistant C. freundii that showed ESBL production. The RT-qPCR analysis revealed that the AmpC mRNA expression is significantly high followed by a high level of AmpR. We sequenced the AmpC and AmpR genes that revealed the AmpR has four novel mutations in comparison to the reference genome namely; Thr64Ile, Arg86Ser, Asp135Val, and Ile183Leu while AmpC remained intact. The ΔAmpR mutant analysis revealed that the AmpR positively regulates oxidative stress response and decreases ß-lactam and aminoglycosides resistance. The AmpC and AmpR high expression was associated with resistance to tazobactam, ampicillin, gentamicin, nitrofurantoin, and cephalosporins whereas AmpR deletion reduced ß-lactam and aminoglycosides resistance. We conclude that AmpR is a positive regulator of AmpC that stimulates ß-lactamases which inactivate multiple antibiotics.

8.
J Mol Model ; 29(8): 270, 2023 Aug 02.
Article En | MEDLINE | ID: mdl-37530879

CONTEXT: Selecting high performance polymer materials for organic solar cells (OSCs) remains a compelling goal to improve device morphology, stability, and efficiency. To achieve these goals, machine learning has been reported as a powerful set of algorithms/techniques to solve complex problems and help/guide exploratory researchers to screen, map, and develop high performance materials. In present work, we have applied machine learning tools to screen data from reported studies and designed new polymer acceptor materials, respectively. Quantitative structure-activity relationship (QSAR) models were generated using machine learning-assisted simulation techniques. For this purpose, 3000 molecular descriptors are generated. Consequently, molecular descriptors having key effect on power conversion efficiency (PCE) were identified. Moreover, numerous regression models (e.g., random forest and bagging regressor models) were developed to predict the PCE. In particular, new materials were designed based on the similarity analysis. The GDB17 chemical database consisting of 166 million organic molecules in an ordered form is used for performing similarity analysis. A similarity behavior between GDB17 materials and the materials reported in literature is studied using RDKit (a cheminformatics software). Noteworthily, 100 monomers proved to be unique and effective, and PCEs of these monomers are predicted. Among these monomers, four monomers exhibited PCE higher than 14%, which is better than various reported studies. Our methodology provides a unique, time- and cost-efficient approach to screening and designing new polymers for OSCs using similarity analysis without revisiting the reported studies. METHODS: To perform machine learning analysis, data from reported studies and online databases was collected. Different molecular descriptors were generated for polymer materials utilizing Dragon software. 3D structures of studied molecules were applied as input (SDF; structure data file format). Importantly, about 3000 molecular descriptors were generated. Comma-separated value (.csv) file format was used to export these molecular descriptors. To shortlist best descriptors, univariate regression analysis was performed. These descriptors were further utilized for training machine learning models. Moreover, necessary packages of Python for data analysis and visualization were imported such as Matplotlib, Numpy, Pandas, Scikit-learn, Seaborn, and Scipy. Random forest and bagging regressor models were applied for performing machine learning analysis. A cheminformatics software, RDKit, was applied for similarity analysis.

9.
Molecules ; 28(13)2023 Jun 29.
Article En | MEDLINE | ID: mdl-37446788

Oxidative stress and chronic inflammation interplay with the pathogenesis of cancer. Breast cancer in women is the burning issue of this century, despite chemotherapy and magnetic therapy. The management of secondary complications triggered by post-chemotherapy poses a great challenge. Thus, identifying target-specific drugs with anticancer potential without secondary complications is a challenging task for the scientific community. It is possible that green technology has been employed in a greater way in order to fabricate nanoparticles by amalgamating plants with medicinal potential with metal oxide nanoparticles that impart high therapeutic properties with the least toxicity. Thus, the present study describes the synthesis of Titanium dioxide nanoparticles (TiO2 NPs) using aqueous Terenna asiatica fruit extract, with its antioxidant, anti-inflammatory and anticancer properties. The characterisation of TiO2 NPs was carried out using a powdered X-ray diffractometer (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray diffraction (EDX), high-resolution transmission electron microscopy (HR-TEM), dynamic light scattering (DLS), and zeta-potential. TiO2 NPs showed their antioxidant property by scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals in a dose-dependent manner with an IC50 value of 80.21 µg/µL. To ascertain the observed antioxidant potential of TiO2 NPs, red blood cells (RBC) were used as an in vitro model system. Interestingly, TiO2 NPs significantly ameliorated all the stress parameters, such as lipid peroxidation (LPO), protein carbonyl content (PCC), total thiol (TT), superoxide dismutase (SOD), and catalase (CAT) in sodium nitrite (NaNO2)-induced oxidative stress, in RBC. Furthermore, TiO2 NPs inhibited RBC membrane lysis and the denaturation of both egg and bovine serum albumin, significantly in a dose-dependent manner, suggesting its anti-inflammatory property. Interestingly, TiO2 NPs were found to kill the MCF-7 cells as a significant decrease in cell viability of the MCF-7 cell lines was observed. The percentage of growth inhibition of the MCF-7 cells was compared to that of untreated cells at various doses (12.5, 25, 50, 100, and 200 µg/mL). The IC50 value of TiO2 NPs was found to be (120 µg/mL). Furthermore, the Annexin V/PI staining test was carried out to confirm apoptosis. The assay indicated apoptosis in cancer cells after 24 h of exposure to TiO2 NPs (120 µg/mL). The untreated cells showed no significant apoptosis in comparison with the standard drug doxorubicin. In conclusion, TiO2 NPs potentially ameliorate NaNO2-induced oxidative stress in RBC, inflammation and MCF-7 cells proliferation.


Breast Neoplasms , Metal Nanoparticles , Humans , Female , Antioxidants/pharmacology , Antioxidants/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Protein Carbonylation , Oxidative Stress , Metal Nanoparticles/chemistry , Inflammation , Cell Proliferation
10.
Ital J Food Saf ; 8(4): 8525, 2019 Dec 05.
Article En | MEDLINE | ID: mdl-31897402

Salmonellosis is a considerable public health problem worldwide, with high economic importance in developed countries. The main purpose of this study was to determine the prevalence of Salmonella infection and antibiogram analysis of isolated strains in a cross-sectional study in Egypt 2016-2017. The study investigated twenty-eight Salmonella isolates from different areas in Egypt and different types of samples, such as human stool (9.3%), Egyptian cattle egrets and storks (28.5%) and grilled chicken from electric grills (36.6%). No isolates were detected from grilled chicken from charcoal grills or drinking water. The main Salmonella serotype detected in the isolates was S. typhimurium (86.5%). Molecular characterization of the invA gene by PCR was carried out and then confirmed by sequencing, and the results were submitted to GenBank. Antibiogram analysis of Egyptian isolates carried out on 9 antimicrobial discs reported that the routine regimes of treatment were not yet effective for recent new Salmonella generations in 2016-2017. The new isolates could be treated with levofloxacin, cefaperazone/sulbactam, chloramphenicol, imipenem or meropenem.

11.
Saudi J Biol Sci ; 25(1): 44-46, 2018 Jan.
Article En | MEDLINE | ID: mdl-29379355

Emergence of multidrug resistant bacteria has made the search for novel bioactive compounds from natural and unexplored habitats a necessity. Actinobacteria have important bioactive substances. The present study investigated antimicrobial activity of Actinobacteria isolated from soil samples of Egypt. One hundred samples were collected from agricultural farming soil of different governorates. Twelve isolates have produced activity against the tested microorganisms (S. aureus, Bacillus cereus, E. coli, K. pneumoniae, P. aeruginosa, S. Typhi, C. albicans, A. niger and A. flavus). By VITEK 2 system version: 07.01 the 12 isolates were identified as Kocuria kristinae, Kocuria rosea, Streptomyces griseus, Streptomyces flaveolus and Actinobacteria. Using ethyl acetate extraction method the isolates culture's supernatants were tested by diffusion method against indicator microorganisms. These results indicate that Actinobacteria isolated from Egypt farms could be sources of antimicrobial bioactive substances.

12.
Saudi J Biol Sci ; 23(2): 282-7, 2016 Mar.
Article En | MEDLINE | ID: mdl-26981011

Diphtheria toxin (DT) is a potent toxin produced by the so-called diphtheria group which includes Corynebacterium diphtheriae (C. diphtheriae), Corynebacterium ulcerans (C. ulcerans), and Corynebacterium pseudotuberculosis (C. pseudotuberculosis). The present investigation is aimed to study in detail the production of DT by C. pseudotuberculosis. Twenty isolates were obtained from sheep diseased with caseous lymphadenitis (CLA) and twenty-six isolates were obtained from 26 buffaloes diseased with oedematous skin disease (OSD). All isolates were identified by standard microbiological and DT production was assayed serologically by modified Elek test and immunoblotting. All sheep isolates were nitrate negative, failed to hydrolyze starch and could not produce DT, while all buffalo isolates (biotype II) revealed positive results and a specific band of 62 kDa, specific to DT, was resulted in all concentrated cell fractions (CF), but was absent from non-toxigenic biotype I isolates. At the same time, another band of 31 kDa specific to the PLD gene was obtained with all isolates of biotype I and II. Moreover, all isolates showed positive synergistic hemolytic activity and antagonistic hemolysis with ß-hemolytic Staphylococci. The obtained results also indicated that C. pseudotuberculosis could be classified into two strains; non-toxigenic biotype I strain, which failed to produce DT as well as being negative to nitrate and starch hydrolysis, and toxigenic biotype II strain, which can reduce nitrate, hydrolyze starch as well as produce DT.

13.
Saudi Med J ; 32(7): 669-74, 2011 Jul.
Article En | MEDLINE | ID: mdl-21748201

OBJECTIVE: This study reports on comparisons between polymerase chain reaction (PCR) and conventional diagnostic methods for typing Clostridium perfringens toxins collected from Central Saudi Arabia. METHODS: Fecal samples from 150 animals showing signs of enterotoxaemia were collected from 24 April 2009 to 25 September 2009, from different farms located in Riyadh, Kingdom of Saudi Arabia. Twenty-seven toxigenic strains of Clostridium perfringens were recovered from 150 fecal and intestinal content samples were identified and typed by conventional methods. All the strains were analyzed by PCR using specific primers for alpha, beta, epsilon and iota toxin genes. The experimental work was carried out at the Center of Excellence in Biotechnology, King Saud University, Riyadh, Kingdom of Saudi Arabia. RESULTS: The results revealed alpha toxin gene Clostridium perfringens type A in 22 (81.5%) strains out of 27 toxigenic strains, however, only 20 (74.1%) of them were identified previously as type A by classical method. One strain (3.7%) was identified as type C and 3 strains (11.1%) were identified as D by PCR typing. Moreover, PCR results confirmed the traditional methods in typing one strain as type B (3.7%). Also, PCR method can detect 2 other strains of type A directly from the feces and intestinal contents of the examined chicken, which provide negative results in bacteriological examination. CONCLUSION: Polymerase chain reaction technique can be used as an alternative diagnostic method for detection and typing of Clostridium perfringens.


Clostridium perfringens/classification , Clostridium perfringens/genetics , Molecular Typing , Animals , Polymerase Chain Reaction , Saudi Arabia
...